Promoting bioengineered tooth innervation using nanostructured and hybrid scaffolds.

نویسندگان

  • S Kuchler-Bopp
  • A Larrea
  • L Petry
  • Y Idoux-Gillet
  • V Sebastian
  • A Ferrandon
  • P Schwinté
  • M Arruebo
  • N Benkirane-Jessel
چکیده

The innervation of teeth mediated by axons originating from the trigeminal ganglia is essential for their function and protection. Immunosuppressive therapy using Cyclosporine A (CsA) was found to accelerate the innervation of transplanted tissues and particularly that of bioengineered teeth. To avoid the CsA side effects, we report in this study the preparation of CsA loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles, their embedding on polycaprolactone (PCL)-based scaffolds and their possible use as templates for the innervation of bioengineered teeth. This PCL scaffold, approved by the FDA and capable of mimicking the extracellular matrix, was obtained by electrospinning and decorated with CsA-loaded PLGA nanoparticles to allow a local sustained action of this immunosuppressive drug. Dental re-associations were co-implanted with a trigeminal ganglion on functionalized scaffolds containing PLGA and PLGA/cyclosporine in adult ICR mice during 2weeks. Histological analyses showed that the designed scaffolds did not alter the teeth development after in vivo implantation. The study of the innervation of the dental re-associations by indirect immunofluorescence and transmission electron microscopy (TEM), showed that 88.4% of the regenerated teeth were innervated when using the CsA-loaded PLGA scaffold. The development of active implants thus allows their potential use in the context of dental engineering. STATEMENT OF SIGNIFICANCE Tooth innervation is essential for their function and protection and this can be promoted in vivo using polymeric scaffolds functionalized with immunosuppressive drug-loaded nanoparticles. Immunosuppressive therapy using biodegradable nanoparticles loaded with Cyclosporine A was found to accelerate the innervation of bioengineered teeth after two weeks of implantation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3-D Bioprinting of Innervated Skeletal Muscle Tissue for Accelerated Restoration of Muscle Function

Introduction Recent advances in muscle tissue engineering present a promising solution to achieve functional recovery of volumetric skeletal muscle defects. 1,2 Rapid progress has been made in the development of a bioengineered muscle tissue by combining cells and biomaterials. While the classical tissue engineering approach involving the cellseeded scaffolds produces muscle tissues in vivo, bu...

متن کامل

Nanofibers implant functionalized by neural growth factor as a strategy to innervate a bioengineered tooth.

Current strategies for jaw reconstruction require multiple procedures, to repair the bone defect, to offer sufficient support, and to place the tooth implant. The entire procedure can be painful and time-consuming, and the desired functional repair can be achieved only when both steps are successful. The ability to engineer combined tooth and bone constructs, which would grow in a coordinated f...

متن کامل

The role of endothelial cells in myofiber differentiation and the vascularization and innervation of bioengineered muscle tissue in vivo.

Musculoskeletal disorders are a major cause of disability and effective treatments are currently lacking. Tissue engineering affords the possibility of new therapies utilizing cells and biomaterials for the recovery of muscle volume and function. A major consideration in skeletal muscle engineering is the integration of a functional vasculature within the regenerating tissue. In this study we e...

متن کامل

Characterization of natural, decellularized and reseeded porcine tooth bud matrices.

Dental tissue engineering efforts have yet to identify scaffolds that instruct the formation of bioengineered teeth of predetermined size and shape. Here we investigated whether extracellular matrix (ECM) molecules present in natural tooth scaffolds can provide insight on how to achieve this goal. We describe methods to effectively decellularize and demineralize porcine molar tooth buds, while ...

متن کامل

Practical whole-tooth restoration utilizing autologous bioengineered tooth germ transplantation in a postnatal canine model

Whole-organ regeneration has great potential for the replacement of dysfunctional organs through the reconstruction of a fully functional bioengineered organ using three-dimensional cell manipulation in vitro. Recently, many basic studies of whole-tooth replacement using three-dimensional cell manipulation have been conducted in a mouse model. Further evidence of the practical application to hu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biomaterialia

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2017